Combining Stochastic Constraint Optimization and Probabilistic Programming - From Knowledge Compilation to Constraint Solving
نویسندگان
چکیده
We show that a number of problems in Artificial Intelligence can be seen as Stochastic Constraint Optimization Problems (SCOPs): problems that have both a stochastic and a constraint optimization component. We argue that these problems can be modeled in a new language, SC-ProbLog, that combines a generic Probabilistic Logic Programming (PLP) language, ProbLog, with stochastic constraint optimization. We propose a toolchain for effectively solving these SC-ProbLog programs, which consists of two stages. In the first stage, decision diagrams are compiled for the underlying distributions. These diagrams are converted into models that are solved using Mixed Integer Programming or Constraint Programming solvers in the second stage. We show that, to yield linear constraints, decision diagrams need to be compiled in a specific form. We introduce a new method for compiling small Sentential Decision Diagrams in this form. We evaluate the effectiveness of several variations of this toolchain on test cases in viral marketing and bioinformatics.
منابع مشابه
Multi-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملStochastic Approach to Vehicle Routing Problem: Development and Theories
Stochastic Approach to Vehicle Routing Problem: Development and Theories Abstract In this article, a chance constrained (CCP) formulation of the Vehicle Routing Problem (VRP) is proposed. The reality is that once we convert some special form of probabilistic constraint into their equivalent deterministic form then a nonlinear constraint generates. Knowing that reliable computer software...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملارائه مدلی برای حل مسائل برنامهریزی تصادفی چند هدفه با استفاده از تابع عضویت هذلولوی
Since most real-world decision problems, because of incomplete information or the existence of linguistic information in the data are including uncertainties. Stochastic programming and fuzzy programming as two conventional approaches to such issues have been raised. Stochastic programming deals with optimization problems where some or all the parameters are described by stochastic variables. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017